
Faculty of Computing and Information Technology
Department of Information Technology

CPIT-110 Syllabus

CPIT-110 Problem-Solving and Programming
Credit: 3 (Theory: 3, Tutorial: 1.5)
Prerequisite: None
Classification: University Required

Course Objectives
The main objective of this course is to teach the students the
basics of constructing algorithms and programming languages.
The student at the end of this course are expected to learn the
basic skills of algorithmic problem solving, the systematic
approach to define the problem and creating number of
solutions, and the basic programing skills which include syntax,
commands, variables, selection statements, loops, functions,
etc.

Class Schedule
Meet 50 minutes 3 times/week or 80 minutes 2 times/week
Lab/Tutorial 80 minutes 1 times/week

Textbook
Dr. Liang, “Introduction to Programming Using Python”
ISBN 13: 978-0-13-274718-9
ISBN 10: 0-13-274718-9

Topics Coverage Durations

Topics Weeks

Chapter 0: Introduction to Problem-Solving 1

Chapter 1: Introduction to Python 1

Chapter 2: Elementary Programming 2

Chapter 3: Mathematical Functions and String 1

Chapter 4: Selections 2

Chapter 5: Loops 2

Chapter 6: Functions 2

Course Learning Outcomes (CLO)
By completion of the course the students should be able to
1. Construct algorithms for solving simple problems.
2. Write a programing code that implements algorithms for

solving simple problems.
3. Analyze and explain the behavior of simple programs

involving the fundamental programming constructs.
4. Identify and describe uses of Python built-in data types

and functions.
5. Write programs that use Python built-in data types and

functions.
6. Apply appropriate conditional and iteration constructs for

a given programming task.
7. Write and/or modify short programs that use standard

conditional structures.
8. Write programs that use standard iterative control

structure.
9. Write programs that use functions.
10. Trace the execution of a variety of code segments and

write summaries of their computations.
11. Identify common coding errors and apply strategies for

avoiding such errors.
12. Apply a variety of strategies to the testing and debugging

of simple programs.
13. Use of an appropriate IDE (Integrated Development

Environment) to create, compile and run a program
developed by the selected programing language.

